Maths Higher Y10

Half Terms 1-6

Maths Year 10 Higher Autumn 1 Gradient

	Formula	A special type of equation that shows the relationship between	A = bh is the formula for the			Gradient	How steep the line is	m in y=mx+c
		variables	area of a rectangle		C	Y intercept	Where the graph crosses the y axis	c in y = mx + c
	Formulae	Plural of formula	(area = base x height) A is the subject of the formula.		Ä	Parallel	Parallel lines have the same	m in v mv.a
	Subject	The variable that is being worked out. It is the letter on its own on) -	Parallel	gradient gradient	m in y=mx+c
ē		one side of the equals sign				Perpendicular	Perpendicular lines cross at 90°	Their gradients
Formulae	Inverse Operation	The opposite operation	Multiply is the inverse operation to divide					multiplied together equal -1
or.			operation to divide		S	Standard Units	One unit	time, mass, length, money, volume, area
	Expression	Contains numbers , operation s and one or more variables	4x + 3y		sares			
Rearrange	Factorise	Rewrite an expression into brackets	6x + 3 = 3(2x + 1) t + u = v $t = v - u$		d Meas	Compound Units	Made of two or more units	speed, rates of pay, prices
Rea	Rearrange	Move terms around using inverse operations			Compound	Speed	Speed = distance ÷ time	30 miles per hour
	Change the	Isolate a term using inverse	Make y the subject of the	1	ď	Density	Density = mass ÷ volume	6 g/litre
	subject of a formula	operations, rearranging the formula			ဝိ	Pressure	Pressure = force ÷ area	N/m²
	Rearrange complex formulae	Isolate a term using inverse operations , requires more steps	If the subject appears more than once you will need to factorise		<u>Density</u>		<u>Pressure</u>	Average Speed
phs	Equation	The rule for finding coordinates for your graph	y = 3x - 4	0.32	M Mass		Force	Distance
r Graphs	Plot linear graphs	Plot all points and join with a straight line	Remember to label x and y axis	Dens	sity	Volume	Pressure P A Spe	eed S T
-inear	Midpoint of a line	The middle of a line segment	Formula: Add x coordinates ÷ 2, Add y coordinates ÷2				Årea	Time

Maths Year 10 Higher Autumn 2 **Equations** in the form $y = ax^2 +$ The graphs are a U shape Simultaneous equations are two equations with two Quadratic Solve Linear Simultaneous **Points** Simultaneous unknowns. They are called simultaneous because they must Graphs bx + coots **Equations** both be solved at the same time. **Roots** Where the graph crosses the x

It is the bottom or the top of

When we solve it tells us the

Also tells us the coordinates

6/18 divide both numerator

and denominator by 6 to get

roots of the equation

Remember to simplify

of the turning point

the graph

The 4 in 4x

a/b

a/b

1/3

∃quations

Graphs

-urther

Cubic

Circle

Reciprocal

Exponential

Use the elimination method:

3)

The equation

Get rid of the terms that are the same

If the operation signs are the same then subtract the

remaining terms. If the operation signs are NOT the same you have to add the remaining terms.

Substitute your known variable back into one of the

Solve the equation to find the variable x or y

equations to find the remaining variable.

The equation of a circle with the centre at the origin is:

 $x^2 + y^2 = r^2$

 $(x - a)^2 + (y - b)^2 = r^2$

x-axis is an

asymptote

An equation with the highest power of x is x3

An equation where x is in the denominator

An equation where x is in the index (power)

Where the **centre** is at (a, b) and r is the **radius**

Exponential function $f(x) = a^x$

> Has a term with a variable index

increasingly quickly

Always equal to 1

Graphs, Quadratic Ř **Turning** and

Turning

Factorising

Coefficient

Expanding

Completing

the Square

Quadratic

Formula

The

brackets

Points

and **Further Expanding**

actorising

Simplify

Numerator

Denominator

axis

graph turns

brackets.

equations

the formula:

divided by two a'

common factor

The **coordinate** of where the

The number multiplying a term

Rewrite the equation without

A way of solving quadratic

Quadratic equations of form

ax2+bx+c=0 can be solved using

'minus **b** plus/minus the square root of **b** squared minus four **ac**

The top number in a fraction

Dividing the numerator and

denominator by the highest

The bottom number in a fraction

brackets, using multiplication

Rewrite the **equation** in

To simplify we factorise the Cancel any common factors Algebraic **Fractions** numerator and denominator

Mutually Exclusive Events Sum to 1.

Mutually exclusive events cannot happen at the same time. Events sum to 1.

Write number in standard form

A list of numbers, objects or outcomes

A – all elements in A

A' – all elements not in A

B – all elements in B
B' – all elements not in B

school

Contains all of the elements for our question

A \(\mathbb{B} - \text{all the elements in both A and B} \)

A UB - all the elements in A or B or both

Used when there are two or more events.

proportional for each category

Each pair of **branches** add to 1 (**mutually exclusive**)
To find the **probabilities** we **multiply** along the **branches**

A smaller group that is taken from the **population**

The whole group that you are looking at, eg. all the students in

Every member of the **population** is **equally likely** to be chosen

Number selected from each strata = $(\frac{strata\ size}{total\ population}) \times sample\ size$

Population size = number in 1st sample x number in 2nd sample

number in 2nd sample that are marked

Represents the **population**, the numbers in the **sample** are

Comparing 2 or more sets of data that share some things in common

Maths Year 10 Higher Spring 1

orm

ш

Standard

(further)

roportion

108

10-4

Base

Index number

Multiply indices

Divide indices

Direct Proportion

Direct Proportion

wall

Formula

Inverse Proportion

Inverse

Proportion Formula

A way of writing large or small numbers

a x 10b

1≤a<10

The number that will be multiplied by itself (eg 53 the base is 5)

Numbers with the same base, add the index numbers

Numbers with the same base, subtract the index numbers

As one amount increases, so does another at the same rate.

y = kx for a constant k

As one amount increases, another decreases, eg. the more

decorators you have will reduce the time it will take to paint a

 $y = \frac{\pi}{n}$ for a constant k

Positive power, multiply

Negative power, divide

Another word for power, plural is indices

eg. the number of hours worked and your pay

 $y \propto x$

Probability

and

Sapture

Venn Diagrams

Element

Universal Set

Set notation

Intersection

Tree Diagrams

Population

Sampling

Random

Sampling

Stratified

Sampling

Capture/recaptur

Union

Inequalities

Estimate

Truncate

Upper bound

Lower bound

Error Interval

Appreciation

Depreciation

Interest Rate

Compound

Interest

Growth

Decay

ounds

Ď

Decay

and

Growth

*o.*3 means 0.333333...

0.312 is equal to 0.312312312...

x<v x is less than v

x>y x is greater than y

 $x \le y$ x is less than or equal to y $x \ge y$ x is greater than or equal to y

that the precise answer could be

The value of something increasing

The value of something decreasing

a bank when money is saved or borrowed.

Getting bigger

Getting smaller

has to be completed.

Round all numbers to 1 significant figure

The largest number that would **round** to a given value

The smallest number that would round to a given value

The range of values between the upper and lower bounds

Money that is paid regularly as a **percentage**, this is usually by

Interest that gets added regularly (eq. monthly, annually),

changes the value of money each time so a new calculation

To shorten a number, you do not **round** Eq. 4.7685 **truncated** to 1dp is just 4.7

Irrational

Simplify surds

Expand

surds

Brackets with

Rationalise the

Denominator

Difference of

two squares

Recurring

Terminating

Dot notation

decimal

decimal

 $a^2-b^2 = (a+b)(a-b)$

numbers

When a decimal number repeats forever

A decimal that ends, it has a finite number of digits, eg 0.25

Two dots show the beginning and end of a recurring group of

number

Surd

A number that cannot be written as a fraction For example: $\Pi = 3.14...$ and does not repeat A square root that gives an irrational answer. A surd is an exact answer For example: $\sqrt{16} = 4$ so is not a **surd** (it is **rational**) $\sqrt{2}$ = 1.4142... and never repeats so is a **surd** (it is **irrational**) $\sqrt{a} \times \sqrt{a} = a$ $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$ $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ Multiply each term in the first bracket by each term in the second bracket Getting rid of any surds from the denominator of fractions

Maths Year 10 Higher Summer 1 Add up your numbers and divide by how many VAT Mean Simple Interest numbers there are

the median is the middle number.

halfway between them

numbers

information

variable

The most common number

Put your numbers in order from smallest to largest,

If there are two middle numbers then the answer is

The difference between the smallest and largest

A graph of plotted points that compares two sets of

A line on your **scatter graph** that best describes the

points on your scatter graph There should be an equal number of

As one variable increases so does the other

As one variable increases the other decreases

Frequencies plotted over time. Points are joined

A point that is far from the line of best fit

Used to find the intersection of 2 or more

probabilities, eq. PA and PB = PA x PB

points above and below your line

Goes roughly through the middle of the

relationship between the two sets of data

A straight line

A pattern in a set of results

with straight lines

Value Added Tax

Income Tax

Ratio

HCF

Simplify

(Further)

Ratio

Simple Interest

Ratio to fraction

Share in a ratio

A tax that is added to goods that you buy

A way of comparing two or more quantities

Calculate the percentage amount and multiply it by the number of periods that the money will be invested for.

Eg. to make purple paint I mix red and blue in the ratio 3:4

The largest number that is a **factor** of two or more numbers

Divide the numbers in your ratio by the Highest Common

Divide the amount by the total £40÷10=£4

Add the parts together 3+7=10

Multiply by the parts

Answer: £12:£28

£4 x 3 = £12. £4 x 7 = £28

To find the **denominator** you add the **parts** together

Tax that you pay from your wages

Highest Common Factor

Steps to share in a ratio

Share £40 in the ratio 3:7

Factor

,	Statistics

Median

Mode

Range

Scatter Graphs

Line of best fit

Positive Correlation

Negative Correlation

Time Series Graphs

The Product Rule

Trend

Outliers

Maths Year 10 Higher Summer 2										Plans and Elevations	Plan	The view from directly above a 3D shape .
	Hypotenuse	The longe triangle, angle				ed	Adjacent - AbJ - A				Elevation	You will see a 2D shape. The view from the front and side of a 3D shape. You will see a 2D shape.
	Adjacent	The side			iven ang	ıle					Sketch	To roughly draw a shape. Always label the sides and write any measurements
	Opposite	The side opposite the given angle Sineθ = opposite ÷ hypotenuse					Opposite - OPP - O sin θ h a tan θ a			Constructions and Loci	Perpendicular	on. Two lines that meet at 90° (right angle)
	Sine										Bisect	To cut something equally in two parts
angled Iometry	Cosine	Cosineθ = adjacent ÷ hypotenuse Tangenθ = opposite ÷ adjacent									Line Segment	Part of a line that connects 2 points, it is the shortest distance between 2 points
Right angled Trigonometry	Tonnent										Locus	A path that is formed by a rule, eg. 2cm from a point. Plural is loci .
Right Trigon	Tangent										Region	The area you shade in, defined in your question
	Event										Construction	An accurate diagram using a compass and ruler .
	Exact Values		sin	0°	30° 1/2	45° √2 2	60° √3 2	90°			Similar Shapes	Two triangles are similar if the angles are the same size or the corresponding sides are in the same ratio .
								(0)	Enlargement	A transformation which changes the size of the original shape		
			cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0		Shapes	Scale Factor	How much the shape has been enlarged , this is the multiplier
			tan	0	$\frac{\sqrt{3}}{3}$	1	√3	Undefined			Scale factor of a line	The multiplier
										Similar	Scale factor of an area	The multiplier ²
										S	Scale factor of a volume	The multiplier ³