Subject: Maths

Year 10 Standard Higher Scheme of Work

The purpose of the Maths curriculum is to equip students with uniquely powerful ways to describe, analyse and
solve problems and to make them more prepared for the real world. solve problems and to make them more prepared for the real world.

We do this by providing a secure understanding of mathematical concepts, from basic principles of mathematics to complex topics that combine several areas of study into a single question.

In Year 10 we continue to concentrate on retention of knowledge and depth of learning. In doing this, all our students have the opportunity to master key skills. The Higher Scheme of work gives students access to the Higher content.

		Half Term 2	Assessment
	Rearrange Formulae Rearrange formulae to change the subject in a geometrical context Change the subject involving the use of square roots and squares Calculate radius or diameter when Sector area or Arc length is given Rearrangement complex formulae involving fractions, roots and powers and where the subject appears on both sides of the formula Linear Graphs Plot Coordinates in 4 quadrants Plot straight line graphs Recognise, sketch and interpret straight line graphs Find approx solutions using a graph Find the coordinates of the midpoint of a line segment Real life graphs: conversion graphs, fixed charge and cost per unit Recognise and interpret graphs of direct and inverse proportion Plot and draw graphs of straight lines in the form $a x+b y=c$ $y=m x+c$ Identify and interpret gradients and intercepts of straight-line graphs Identify and interpret gradient from an equation $y=m x+c$ - Find the equation of a straight line from a graph Use $y=m x+c$ to identify parallel Find the equation of a line through two given points or through one point with a given gradient - Know that the gradient of a straight line is interpreted / rate of change	Quadratic graphs, turning points and roots Recognise, sketch, and interpret graphs of ... quadratic functions Identify roots, intercepts and turning points of a quadratic function Find roots of a quadratic algebraically by factorisation Find approximate solutions using a graph Identify the line of symmetry of a quadratic graph Find roots of a quadratic algebraically by factorisation - with rearrangement needed Further Expanding, Factorising \& Algebraic Fractions Expanding more than two brackets Factorising quadratic expressions form $a x 2+b x+c$ - Deduce turning points by completing the square Simplify algebraic fractions Multiply, divide, add and subtract algebraic fractions Linear Simultaneous Equations Solve two simultaneous equations in two variables (linear/linear) algebraically - Find approximate solutions using a graph Derive two simultaneous equations, solve the equation and interpret the solution Further Graphs Recognise and sketch cubic graphs and the reciprocal graph Plot and interpret ... reciprocal graphs	Half Term 1 The week before half term break we have our first Foundation GCSE Paper. Half Term 2 Just before Christmas Break. Covering content from Autumn Term

	Identify and interpret the gradient from an equation $a x+b y=c$ Perpendicular lines Generate equations of lines perpendicular to the given line Compound Measures - Interpret distance-time graphs, - Change between standard units time, mass, length, money, voe, area - Change between compound units e.g. speed, rates of pay, prices - Intervals for graph scales - Density and pressure	Recognise and interpret graphs that illustrate direct and inverse proportion Sketch and interpret graphs of exponential functions $y=k x$ for positive values of k and integer values of x Draw circles, centre the origin, equation $x 2+y 2=r 2$ Sketch graphs of simple cubic functions, given as three linear expressions

Proportion (further)

- Interpret equations and graphs that describe direct and inverse proportion
- Identify direct proportion from a table of values, by comparing ratios of values, for x squared and x cubed relationships
- Write statements of proportionality for quantities proportional to the square, cube or other power of another quantity
- Set up and use equations to solve word and other problems involving direct proportion or inverse proportion
- Use $y=k x$ to solve direct proportion problems, including questions where students find k, and then use k to find another value
Solve problems involving inverse proportionality

Half Term 5

Statistics

- Draw and Interpret Frequency tables, bar charts, composite bar charts, pie charts, pictograms, vertical line charts, stem and leaf (including back-to-back)
- Mean, mode, median, modal class
- Range and outliers
- Compare the mean, median, mode and range (as appropriate) of two distributions using bar charts, dual bar charts, pictograms and back-to-back stem and leaf
- Recognise the advantages and disadvantages between measures of average
- Scatter graphs - recognise correlation
- Recognise types of data: primary
secondary, quantitative and qualitative
- Understand sample and population
- Listing combinations
- Sampling
- Interpret and construct tables and line graphs for time series data
- Scatter graphs - draw estimated lines of best fit; make predictions; interpolate and extrapolate apparent trends while knowing the dangers of so doing

Surds

- Simplify and manipulate algebraic expressions involving surds
- Simplify surd expressions involving squares
- Understand surd notation

Half Term 6

Right angled trigonometry

- Trigonometry in right angled triangles
- Know the exact values of $\sin \theta$ and $\cos \theta$ for $\theta=0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$ and 90°. Know the exact value of $\tan \theta$ for $\theta=0^{\circ}, 30^{\circ}$, 45° and 60°

Similar Shapes

- Use formal geometric proof for the similarity of two given triangles
- Identify the scale factor of an enlargement of a similar shape as the ratio of the lengths of two corresponding sides, using integer or fraction scale factors
- Find missing lengths in similar 3D solids
- Relationships between areas and volumes in similar figures
- Understand the effect of enlargement on angles, perimeter, area and volume of shapes and solids
- Write the lengths, areas and volumes of two shapes as ratios in their simplest form
- Find missing areas and volumes in similar 3D solids
- Know the relationships between linear, area and volume scale factors of mathematically similar shapes and solids
- Use the relationship between enlargement and areas and volumes of simple shapes and solids

Assessment

Half Term 5
Last Week of HT5
third GCSE
Foundation Paper

Half Term 6

Summer Exam these exams cover all the topics learnt in year 9 in equal measures.

	Expand and simplify single and double brackets involving surd manipulation Rationalise denominators Bounds Calculate the upper and lowers bounds of numbers given to varying degrees of accuracy - Calculate the upper and lower bounds of an expression involving the four operations Find the upper and lower bounds in real-life situations using measurements given to appropriate degrees of accuracy Find the upper and lower bounds of calculations involving perimeters, areas and volumes of 2D and 3D shapes Calculate the upper and lower bounds of calculations, particularly when working with measurements	- Solve problems involving frustums of cones where you have to find missing lengths first using similar triangles Quadratic Sequences Continue a quadratic sequence and use the nth term to generate terms Find the nth term of quadratic sequences

Useful Resources for Supporting Your Child at Home:	Homework:
whgs-academy.sparxmaths.uk	Sparx Homework is set automatically weekly, and students have 7 days to achieve 100\%
$\underline{\text { curriculum.unitedlearning.org.uk }}$	ttrockstars.com
$\underline{\text { www.bbc.co.uk/bitesize/subjects/zahs34j }}$	

